Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives

نویسندگان

  • F. Marcq
  • P. Demont
  • Philippe Monfraix
  • A. Peigney
  • Ch. Laurent
  • Tomasz Falat
  • F. Courtade
  • T. Jamin
چکیده

Combining conductive micro and nanofillers is a newway to improve electrical conductivity. Micrometric silver flakes and nanometric carbon nanotubes (CNTs) exhibit high electrical conductivity. A new type of hybrid conductive adhesives filled with silver flakes and carbon nanotubes (DWCNTs or MWCNTs) were investigated. High electrical conductivity is measured as well as improved mechanical properties at room temperature. Small agglomerates and free MWCNTs dispersed in the silver/epoxy composites improve the electrical conductivity and a synergistic effect between MWCNTs and micro sized silver flakes is observed in hybrid composites. Glassy and rubbery storage moduli of the hybrid composites increase with increasing silver loading at fixed CNTs volume fraction. High value of the storage modulus, measured in DWCNTs/lAg hybrid composites at rubbery state, is caused by strong agglomeration of DWCNTs bundles. The electrical and mechanical properties are consistent with the morphologies of the hybrid composites characterized by SEM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly conductive, printable and stretchable composite films of carbon nanotubes and silver.

Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid compos...

متن کامل

Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors

There is a great need for viable alternatives to today's transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the R...

متن کامل

Adhesive and Conductive – Inkjettable nano-filled inks for use in microelectronics and microsystems technology

Current technology, Inkjet is an accepted technology for dispensing small volumes of material (50 – 500 picolitres). Currently traditional metal-filled conductive adhesives cannot be processed by inkjetting (owing to their relatively high viscosity and the size of filler material particles). Smallest droplet size achievable by traditional dispensing techniques is in the range of 150 μm, yieldin...

متن کامل

The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires

A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs) within the epoxy resin matrix while using silver nanowires (AgNWs) as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc) and 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole (imidazole). AgNPs were generated in situ during the curin...

متن کامل

High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2011